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TECHNICAL NOTE 2197

PRESSURE DISTRIBUTION AND DAMPING IN STEADY PITCH
AT SUPERSONIC MACH NUMBERS OF FLAT SWEPT—BACK
WINGS HAVING ALL EDGES SUBSONIC

By Harold J, Walker and Mary B, Ballantyne

SUMMARY

A method is presented for calculating the pressure distribution and
damping in steady pitch at supersonic Mach numbers of thin, flat, swept-
back wings having all edges straight and subsonic. Although it is adapt—
able to wings with negative rake at the tips, the method is applied only
to wings with streamwise tips. :

The method consists of two steps: first, the calculation of a basic
pressure distribution, which is identical to that existing on an infinite
triangular plan form having leading edges that coincide with those of the
swept—back wing; and second, the correction of this basic distribution +o
account for the effects of the subsonic trailing edges and tips. In cal-
culating the various corrections, use is made of the principle of the

superposition of conical flows. The derivative for the damping in pitch
is calculated in a similar manner.

In applying the method of analysis to a typical configuration, it
was found that several of the corrections were small, and, from a practi-
cal standpoint, could be dropped. By dropping these terms the method is
shortened to the extent that it closely parallels previously published
methods for calculating the 1ift, pitching moment, and damplng in roll of
swept—back w1ngs w1th subsonic edges.

A substantial reduction of the pressure in the vicinity of a subsonic
tip was disclosed in the analysis. This effect was also found earller for
the cases of steady 1ift and steady roll.

The method is based upon the usual assumptions and limitations of .
the linearized potential theory for supersonic flow.

INTRODUCTION

Methods have been developed prev10usly for the calculation of the
pressure distribution and the damping in steady pitch at supersonic Mach
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numbers for thin, flat wings of various plan forms, including triangular
wings (reference 1), rectangular wings (reference 2), wings with super—
sonic leading edges but somewhat arbitrary plan form (reference 3), and
swept-back wings having all supersonic edges or a combination of subsonic
leading edges and supersonic trailing edges and tips (references 4 and 5).1
An approximate analysis of the damping in pitch of a limited class of
swept—back wings having all edges subsonic and straight is reported in
reference 6. In the present report, a method, which can be applied more
generally than that of reference 6, is presented for the analysis of swept—
back wings with straight subsonic edges.

The present method of analysis consists essentially in the super-
position of various conical and quasi—conical® fields of pressure in such
a manner that the particular boundary conditions for a swept-back wing in
steady pitch are fulfilled. In detail, it closely follows the analyses
given in references 7 and 8 for the case of steady 1ift and in reference 9
for the case of steady roll. The analyses for the three cases, in fact,
differ only in application to the different sets of boundary conditions
corresponding to lift, roll, and pitch.

The present analysis and those of references 7 and 9 are limited to
wings having zero or negative rake at the tips; however, wings having
positive rake can be treated through an adaptation of the method given
in reference 8. Although the analysis for the type of configuration in
which the Mach lines from the root of the trailing edge intersect the
leading edge is not complete, the results giveh for this case are suffi-
ciently accurate for many practical purposes. The scope of the method
in general is limited to the usual idealizations and assumptions of lin—
earized potential theory.

To illustrate the application of the method, calculations of the
damping derivative and of the pressure distribution along several chord-—
wise and spanwise sections of the swept-back wing shown in figure 1(a)
are included.

NOTATION

a slope of any ray through origin divided by slope of Mach
lines (fig. 1(b)) (L)

1The terms "subsonic edge" and "supersonic edge" refer to edges having
normal components of flow which are subsonic and supersonic,
respectively.

The term "quasi—conical pressure" designates a pressure which is
distributed linearly along rays passing through a fixed point.
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me

the ray a intersecting the trailing edge at the point-
from which the Mach line passing through the tip of the
leading edge emanates (fig. 1(b))

- %%ﬁ(l—m)

aq =
1 - PBs (1-m)
commt

the ray a intersecting the trailing edge at the point
from which the Mach line passing through point P(x,y)

Bytco—x .

emanates (fig. 1(b)) !on trailing edge, a,=my——sj;
\ By+comt—X

on tip, ao=;:E%§:g7}

slope of ray through the trailing-edge tip divided by

slope of Mach lines (fig. 1(Db)) ( —Bs
Co+§——

S
ot

wing span

pitching—moment coefficient (.fif—m }
: L-\éfo>sco
. [ BCm
derivative for the damping in pitch
. Ly /%
2V
(In the present report, Cmq with no subscript represents

the damping moment about the center—of-—gravity axis
resulting from the loading due to steady pitch about the
y axis instead. of the center—of-gravity azis. See
equation (2).)

root chord of wing

auxiliary functions used in analysis

slope of leading edge divided by slope of Mach lines
(fig. 1(b)) (B cot A) :

slope of ray passing through point X5, and tip of lead-
ing edge divided by slope of Mach lines (fig. 1(Db))

F%ﬂﬂ]

| B
LBy
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slope of ray passing through root of trailing edge and
tip of leading edge divided by slope of Mach lines

(fig. 1(v)) <@%§">

slope of tip divided by slope of Mach lines

slope of trailing edge divided by slope of Mach lines
(fig. 1(v))

pitching moment about the y axis

free—stream Mach number

pressure difference between the upper and lower wing sur—
faces

Fricient Op
pressure coe icien l_V—’Z—

correction to the basic pressure coefficient

basic pressure coefficient at the root of the trailing
edge for a wing at constant angle of attack

basic pressure coefficient at the root of the trailing
edge for a wing in steady pitching motion

steady'pitéhing velocity, radians per unit of time
(positive, if direction of rotation is that of increas—
ing angle of attack)

2 — 2 —
1= gg K + —Z = E
1 —m 1 —m

semispan of wing
area of wing

slope of any ray passing through the point Xp Y

/‘ X—Xp
divided by slope of Mach lines [ B
\" v,

| slope of ray through trailing—edge apex divided by slope

of Mach lines <[3 J >

X—Cg,
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N v free—stream velocity
- x,y;z Cartesian coordinates in the stream direction, across the
stream, and in the vertical direction, respectively (fig.’
1(b)) S
X streamwise distance from y axis to the center of pressure

of an element of wing area

X streamwise coordinate of point where any ray to intersects.
tip or leading edge (for the tip, x4 = ts + co, for the
leading edge, xg = tzim + co) ©

xc.g. streamwise distance from y axis to center of gravity of
alrplane configuration

A force in the vertical direction

ggg dimensionless parameter répresénting steady pitching velocity

B M 2-1

w
5 _ constant factor used in equations (5) and (6)
- o ‘ free—stream mass density
X argument of inverse cosine terms (see text)
A angle of sweep of leading edge
Elliptic Intégrals

K complete elliptic integral of first kind with modulus M/l—mz

E complete elliptic integral of second kind with modulus l;m?

K, .complete elliptic integral of first kind with modulus kg

Eo complete elliptic integral of second kind with modulus kg

ky A 1-m ®

i»

F(py,k,) . incomplete elliptic integral of first kind with modulus k.,
v amplitude @
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incomplete elliptic integral of second kind with modulus kg,
amplitude @4

. 1 1 - toz
sin ——————e
J 1 —-mtz

complete elliptic integral of first kind with modulus k

complete elliptic integral of second kind with modulus Xk

(m-ao) ( )
: em(l+a,)

1 — k2

incomplete elliptic integral of first kind with modulus Xk?,
amplitude o

incomplete elliptic integral of second kind with modulus k',
amplitude o

— 1 ~/l+m
k! 2

incomplete elliptic integral of first kind with modulus k',
amplitude ¥

incomplete elliptic integral of second kind with modulus k',
amplitude

By+x 2m
[E(k) — K(k)] F(o,k") + K(k) E(p,k")

[E(k) ~ K(k)] F(¥,k') + K(k) E(¥.k')
Subscripts

terms related to the conical pressures (except as noted)

terms related to the quasi-conical pressures (except as noted)
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A terms evaluated at the poin£ A(xA,yA) on the wing boundary

m, c c. a \
[on the trailing edge, xy = 2 Yy = Il]‘—‘7-——9—-——-; on the tip,

m—a B(my-a)

X, = %?, Iy = SJ '
L : terms corresponding to steady 1ift
P terms corresponding to steady pitching velocity
R terms cofresponding to steady rolling velocity
c.g. terms referring to center—of-gravity axis of airplane

configuration ’ ‘
a designates "per unit angle of attack"

Superscripts

i terms related to symmetrical canceling sectors in wake
T terms related to oblique canceling sectofs in wéke
tee terms related to canceling sectors outboard of tip

METHOD OF ANALYSIS

The method for calculating the pressure® and the damping derivative

-for flat swept-back wings in steady pitch is developed in a manner simi—

lar to that in reference 7 for wings in steady 1ift and in reference 9
for wings in steady roll. The present-analysis, therefore, will be
shortened somewhat by referring frequently to these two reports. The
analysis is restricted to wings having straight subsonic edges and,
although it can be adapted easlly to wings with negative rake? at the
tips, is applied only to cases of zero rake (i.e., streamwise tips).

A thorough treatment of those cases in which the Mach lines originating
at the trailing edge intersect the leading edge is not included; however,
results which are sufficiently accurate for most practical cases of this
type can be obtained from the method as outlined.

SThroughout the report the terms "pressure" and "pressure coefficient”
will be used synonymously. ’
The rake at the tip is negative if the tip slopes inwardly from the
leading edge. ‘ ’
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In the coordinate system chosen for the analysis, the origin is
located at the apex of the leading edge and the x axis coincides with
the root—chord line of the wing. (See fig. 1.) The y and 2z axes
extend spanwise in the plane of the wing and perpendicular to the plane
of the wing, respectively.

The analysis is facilitated by assuming initially that the pitching
axis coincides with the y axis. Subsequently, the pressure distribution
due to pitching about an axis passing through the center of gravity of the
airplane configuration (assumed to lie on the x axis at a distance

X, g. downstream from the y axis) can be obtained by superposing on the

pitching motion about the y axis a vertical translational motion of
velocity ax., g. The pressure distribution due to this translational

motion corresponds to that of a wing at a constant angle of attack of
—qx, ./V. (See reference 4.) Thus,

gXe
P = - ZC:-B. )\ p
®e)e g < v > Lo
2x
= ciP (1)
- (%2) Zen,
where PP and PLa have been corrected for the effects of canceling

the excess basic pressure in the wake and outboard of the tips. The cor—
responding transformation for the damping derivative is

(o)., ™ (o ) = (6) ~# %o () o

in which (Cm > and <CL > are the damping derivative and 1ift
q a/, -

coefficient corresponding to steady pitching motion about the y axis,

and C and C are the moment coefficient and 1ift coefficient per
unit angle of attack. In order to simplify the analysis in the present

report, the terms Cm and (CL ) are calculated as a single
q q

term Cp such that Y y

- N x ’X
co, ook, -o(fum ) e (2)
Qcmq>c Cmq o e\ Te Ly
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It should be observed that the term Cp. ‘then represents the damping

moment about the center—of—gravity axis resulting from the loading due
to steady pitch about the y axis, and therefore does not, by itself,
constitute the complete damping derivative (except in the special case
in which the center of gravity lies at the leading-edge apex). The
additional terms (PLu’ CLG, and Cma) required for other locations

of the center of gravity can be calculated by the method of references
7 and 8. : . :

The order of the analysis consists in the derivation of the pressure
distribution, followed by the calculation of the damping derivative.

Pressure Distribution

Following the procedure given in references 7, 8, and 9, the swept—
back wing is considered initially to be an integral part of an infinite
triangular plan form, the leading edges of which coincide with those of
the swept-back wing. Then it is possible to calculate a basic pressure
distribution over the swept-back wing by means of the simple expression
for the triangular wing. The excess basic pressures introduced in the
wake and outboard of the tips of the swept—back wing in the first step
are subsequently canceled by superposing over those regions a series of
conical and quasi-—conical pressure fields. At the same time, the Kutta
requirement of zero pressure along the trailing edges and tips is ful-
filled. If the trailing edges and tips are supersonic, these exterior
pressures may be neglected since their influence does not extend onto .
the plane of the wing. For wings with subsonic edges, several primary
and secondary corrections representing the effects of canceling the
excess pressure in the wake and outboard of the tips must be added to the
basic pressures.

Basic pressure distribution.— The basic pressure distribution for
the triangular wing in steady pitch is given in reference 4 as

2_g2
Pp = <QEQ 8 x 2mP-a?
av

W o [ra

' . - (3)
— 2 =
R = 12m® g, o §.
1-m? 1-m?

The variation of pfessure is seen to be quasi conical (i.e., the pressure
varies linearly in the x direction along a given ray a) and Fo be
dependent principally upon the sweep of the leading edge. Equation (3)
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also can be used directly to calculate the pressure distribution of swept—
back configurations, except in the vicinity of a subsonic boundary. For
the configuration considered herein, the regions in which the above
expression is inadequate are labeled I, II, and III in figure 1(a).

Region I is influenced by the excess pressure in the wake, region II by
the excess pressure outboard of the tip, and region IITI by the pressure
both in the walle and outboard of the tip.

Primary corrections due to cancellation of basic pressure in wake.—

The corrective terms, which in regions I, II, and III ccrrespond to the
induced effects caused by the cancellation of the excess basic pressure,
are designated "primary corrections” in the following analysis. They are
derived by superposing along the subsonic boundaries a series of sectors
o7 conical and quasi-<onical pressure which, when integratei, completely
cancel the excess pressure. The function for each sector of canceling
pressure, in order to fulfill the boundary conditions of the pressure to
be canceled, must:

1. Represent a field of pressure consisting of conical and quasi-
conical portions which conform with the pressure field given
by equation (3)

2. Have a dowvnwash flow field which does not, in general, extend
onto the plane of the wing, in order that the flatness of the
wing be maintained

3. Satisfy the linearized equation for potential flow

A function, which fulfills the above requirements with regard to the
cancellation of the basic pressure in the wake, is composed of two prin-—
cipal parts: the first, represented by a single symmetrical sector of
pressure, and the second, represented by a series of oblique sectors of
infinitesimal pressure. The first cancels the relatively large field of
pressure determined by the basic pressure at the apex of the trailing
edige (fig. 2(a)), and the second cancels the remaining smaller portion
of the pressure (fig. 2(b)).

The first principal part of the function is composed of a conical
and a quasi—conical component, and can be derived from the symmetrical
function previously utilized in reference 7 for the lifting case. Thus
the functionb

®It is understood that the real part of F(P,,k,) applies. For values
of sin Qo greater than one, the real part of @o is equal to =/2,
and the real part of F(pgy,k,) is equal to K.
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PLO
LAPL = - K‘é" F(Cpo,ko)
‘where
- 2
ko = 1-~mt
| — 1-t .2
©q = sin 1 -—»-95
L—my

and, where Py - 1s the lifting pressure at the apex of the trailing
o

edge, can be used directly in the pitching case to cancel a field of
constant pressure, equal in magnitude to the pressure (due to pitch)
at the trailing—edge apex, by rewriting it in the form

- |
fp, ' = = g F(P0rko) | (%)

;

R l“1"02
sin v/ 5
l—mt

where PPo "is given by equation (3) fop a=0 and x=c,, that is,

()

The field of pressure canceled by means of equation (%) is conical
(fig. 2(a)), since the canceling pressure is constant along the rays t
originating at the apex of the tralllng edge.

Po

(o 2N

A symmetrical function, which cancels the remaining quasi-conical
portion of the pressure (fig. 2(a)), can be derived by the method of
superposing Infinitesimal conical pressure fields, as outlined in
reference 9. The derivation consists in the formation of a function for
a quasi-conical pressure field by integrating the effects at a point
P(x,y) on the wing of a series of infinitesimal symmetrical conical sec—
tors represented by equation (4). The sectors are distributed in a pyram—
idal arrangement with the apexes located along the ray to = 0. If ¢ is

the streamwise coordinate of the apex of each sector measured from the apex

of the trailing edge, and the limit to designates the apex of the rear—
most sector contalnlng the p01nt P(x,y) within its Mach cone, the ‘
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derivation leads to the expression6

| Eo P(@g,k,)
. f1 = r.p. Bld/\ —x ag
o O

P (5)

|5

x—c
= r.p. 8 _E—Q [F(¢O,ko) -
o

in which

1t 2
Pe gin™> 5

b = x—Ey—g

o
and ®; 1s a constant. As desired, the real part of equation (5) is
directly proportional to the distance (x-c,) and varies linearly with
t, Dbetween the ray t, = 0 and the trailing edges of the wing as shown
in figure 2(a). The expression, however, reduces to the value
61(x—co)(Ko-n/2)/Ko, instead of zero, along the trailing edges. Hence,
in order to satisfy the boundary conditions along the trailing edges, it
is necessary to subtract from equation (5) an additional function which
has the value 8, (xc,)(K,n/2)/K, 1in the region of the wake. This addi—
tional function can be derived from the two expressions obtained by super—
posing the infinitesimal conical sectors represented by equation (4) along
the rays to = my and %o = —mt, respectively, in a manner similar to
that for deriving equation (5). In this manner, the two functions

t
Fomr. 2,83 (100 ) By (1 I (0016 1 (6 JE(9, ) = T%%J (=t ) oo )]

and
t

(o]

2w e
f3=r.p.6a(x—co){?t(l+mtto)F(¢o,ko)—(to+mt)E@Po,ko)+ TE;:EEJ'Jqlf*OZ)(tog—mtz)

are determined. Since only the real parts of these two functions are to be
considered, the factors which determine the signs of the radical terms may
be replaced by to/lto!. The two functions are now added giving the
resultant function

fy = r.p. 8 (x—c,) [F(P,,k,) - E®@,,k,) ] | (6)

6The abbreviation r.p. lndicates real part.
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which 'along the trailing edges reduces to the value §;(x—co)(Ko—Eo).

If &, 1is set equal to 51(K0-«/2)/K0(K04E0), thern equation (6)

becomes the additional function required to satisfy the boundary condi-—
tions along the trailing edges.’ Except for the determination of the con— -
stant 8;, the expression obtained by combining equations (5) and (6)
describes the desired field of quasi—conical canceling pressure. This
function must have the same boundary value along the x axis as that
given by equation (3) with x replaced by x—co, that is,

X—=Cy g _/ qco> 16m X—C, 5 X~C,,
K 2 \ 27 BR %  To ©o

B1

Thus, ®; must be equal to QPPOKO/xco, and the corrective term corre—
sponding to the quasi—conical portion of the oressure becames‘

Todg [F(¢Osko) - E(¢o,ko)] }' o ‘ (7)

Equations (4) and (7) together comprise the first part of the over—
all function required to cancel the excess basic pressure in the wake.”
The field of pressure represented by these equations is shown in figure 3,
in which the regions of overlapping (or induced) pressure on the wing are -
indicated by the dotted lines.

The second part of the complete Pressure—canceling function for the
basic pressure in the wake (consisting of a series of oblique sectors)
has been developed in reference 9, but in the form appropriate to a condi-—
tion of steady roll. The expression for a single oblique sector of cancel—
ing pressure for the right half of a rolling wing is

"It is interesting to note that, if the difference between the func—
tions f, and fo is taken, the function '

2 1 '
fs = r.p. 65y ltE(ch’,kO) — mq F((Pc,ko) - F—.I /(l—toz)(toz-mt2) J
o
which is directly proportional to Y, 18 obtained. This function
and f, have been derived by other methods in reference 10, and are
~utilized in reference 6 to calculate approximate values for the damping
in roll and pitch for swept—back wings with subsonic tralling edges.
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‘d(APR") = - %(?A) cos™Ix'da — —(dPRA> T4 %ii <cos_1 x'' -

22 ) o x®) da > (8)

|
o)
/Eé\
N
N
+
o
/\\.
w%
N

where
(1-e)(t-mt) - (mg-a)(1-t)
(1-my ) (t-e)
and where PRA 1s the pressure in steady roll at a point A(XA,yA) on
the tralling edge defined by

‘X":

x, = =%
n{-a

vy, = m.tc a

A" B(mg-e)

Equation (8) is seen to be made up of two components, the first <:APRl'i>
conical, and the second \APRz"> quasl conical [due to the term (y—yA)/yA] .

Equation (8) defines an oblique sector of infinitesimal pressure to
be superposed on the basic pressure in the wake. As shown in figure 1(b),
each sector has an apex at the point A(xA,yA) on the trailing edge, a
base at an infin"te distance downstream, and is bounded on one side by the
ray a and on the other by the trailing edge. This expression can be
used to cancel pressures due either to roll or pitch; however, for the
' case of pitch it is necessary to rewrite the equation in terms of x and
x, rather than y and V. Thus, by substituting

X—XA a y—"yA
3t oy

and by replacing Py with Pp, equation (8) is transformed to

dap — dp — -t — \
a(4Pp't) = -1 (ZPA) cos™txrrga — L PA) XEA Tt (coslw'—
T da 7 da Xy g8 N\
t-a 1"mt / ““é da - g (9)
t—mt l-a

= d"\APPlv'> + d(APP2">
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The field of pressure represented by eguation (9) is illustrated in fig—
ure 4, in which the lower portion of the pressure corresponds to the coni—
cal component and the upper portion to the quasi-conical component. The
region of the pressure which overlaps the wing is shown by the dotted lines.

- The total effect upon the pressure at a point P(x,y) on the right
wing of canceling the field of basic Pressure in the wake in excess of the
pressure canceled by equations (4) and (7) is found by integrating equa—

tion (9) between the 1imits a=0 and a=8,. The upper limit a, repre—

sents the rearmost sector, the Mach cone of which passes through the point
P(x,y) (fig.1(b)), and is defined in reference 7 as - ‘
' By+c.—=x '
By = my, O | (10)
By+mic—x |
Also, for X, located on the trailing edge, it can be shown.that
' X=X, mt—t ) mtx—By _

Xy m—a mCo

Hence, for the basic pressure in re
correction becomes

' a N
0 /dPp )
AP"=__.1_f A> L yrr g -
P cos ~ X da
7t
] da .

naO 4P .
1 P m x—By ‘> /- n_ e temp ST
(2 (o 2 )

= re 11
APPl + APP2

gion I, the second part of the primary

. where .

dPp, <qc°> 8my, [ en* 3uta® + a®m; :l
da 2v/ BR L(mg-a)3(m®-a2)3/2

A graphical method of integration is recommended for solving equation (11).
The separate conical and quasi—conical components will be retained through—
out the remainder of the analysis in order to show their relative magni—
tudes when applying the method to a typical configuration.

Equations (4), (7), and (11) therefore comprise the, complete set of
primary corrections to be added to the basic pressure in region I adJjacent
to the subsonic trailing edge. .They are only partial corrections for
region III, which is also affected by the cancellation of Ppressure out-
board of the tips and by the cancellation of certain secondary pressures
"to be discussed later. :
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Primary corrections due to basic—pressure cancellation outboard of

tips.— In genefal, the excess basic pressure outboard of any subsonic

boundary (except the leading edge or a tip with positive rake) may be
canceled either wholly or in vart by means of equation (9). This expres—
sion can be readily modified to conform with the boundary conditions of
the excess basic pressure outboard of the tips. The section of this
excess pressure at the tip is shown in figure 2(b). With reference to
figure 5 and noting that the wing lies in the negative range of t of
each sector of infinitesimal canceling pressure to be superposed outboard
of the tips, it is seen that to apply equation (9) to the tip it is neces—
sary only to substitute -mg, -t, and -a for my, t, and a,

respectively. Thus, for & right-hand tip with zero rake (mg=0),

dpP
P —-

A cole"' da — }
da

a(ppttt) =—%<

%(‘Eﬂ)i;;"_&z E:os_l)("' - ta «/W} da & (12)

da ) 2 t(1+a)

SICTORCED

where X'' reduces to

Xttt = a+t+2at
t-a

and where

Bs
xA a

d‘PPe ___/ _CE_Q_> % [ 2m4—3m2a2+a.3mt :l
dga \ 2v/ BR L(m-a)3(n®a?)3/2

The sector of infinitesimal canceling pressure represented by equation (12)
is shown in figure 5. In this analysis only the tip with zero rake is
considered; however, the tip with negative rake can be treated in an analo—
gous manner. The correction for the tip with positive rake along which

the pressure is infinite, although not considered herein; can be calculated
by adapting to the present case the method given in reference 8 for the
cage of steady 1lift.

The total effect on the pressure at a point P(x,y) of canceling
all the pressure outboard of the tip, as ghown in figure 5, is found
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by integrating equation (12) between the limits a=a, and a=m, where
a, for the tip is given in reference T as

=_—Bs

%o T x4B(y-e)

- It is noted that the term dPp /da  becomes infinite at the upper limit.
‘of integration m; therefore, the integration should be made according

to the method of reference 7. Thls method leads to the expression

m

. 1t =__l P _L cos_’lx'" da —_
e n\éh Py da

)
m = 2
L Pp 4 . P A b (cos“'lx"" - 22 axn > } da
7 Ada | x, a t(1l+a)
(o}

which, after substituting the expression for Pp from equation (3),
reduces to : A

AP.11Y = _(SC_O_> _%_ /ao(S—Y)[fﬁ (By+x)(2m2—a2) da+\
P 2v/ TBR 8 J Co (Byﬁax)~/Eﬁ2_a2)(a_aq)(l+a)
[ o (Eyex) (fe?) ] “ \ (13)
| co 20(14a) (gy-ax)s/ (nP-a%)(a—ao)(1+4a)

- tee tee
APPl + APP2

J

The first integral represents the conical portion of the canceling pres—
sure, and the second integral, the quasi—conical portion. Equation (13)
has been integrated in terms of elliptic functions in Appendix A. This
equation therefore becomes the primary correction for the basic pressure
at points contained within the Mach lines from the tip of the leading
edge (region II, and region III in part).

In Appendix A, it is interesting to note that along the Mach line
originating at the tip of the leading edge (corresponding to ag=m) the
conical part of the primary correction for the tip does not reduce to
zero. This correction therefore represents an abrupt drop in pressure

which, as is shown in the following illustrative example, is sufficiently '

large to cancel nearly all the basic pressure between the Mach line and
the tip. Similar effects were noted in the cases of steady 1lift und
steady roll.




18 . NACA TN 2197

Secondary corrections.— Thus far, by means of equations (4), (7),
(11), and (A%), all the excess basic pressure in the wake and cutboard of
the tips has been eliminated. However, since the canceling sectors used
in the process are also infinite in extent, still further, although much
smaller, excess pressires are again introduced in certain regions in the
wake and outboard of the tips. For example, as shown in figure 6 for the
right half of the wing, excess secondary pressure will be added to the
shaded region outboard of the tip and, in some cases, forward of the
leading edge as a result of superposing the symmetrical and oblique can-—
celing sectors along the trailing edges. In a like manner, excess second-—
ary pressure still remains in small regions downstream from the trailing
edge after canceling the basic pressure outboard of the tips, as shown
for the left half of the wing in figure 6 (the secondary pressure in
extreme cases overlapping the opposite wing panel, as shown). A rigorous
mathematical analysis would require the cancellation of these secondary
‘pressures and, in turn, the successively smaller excess pressure introduced
by canceling the secondary pressures, and so on. The details of canceling
these secondary and lesser pressures by numerical methods are discussed in
references 7 and 8; but, since the procedure is rather complicated and
leads to only minor improvement of the final wvalue, approximate methods
will be utilized here.8 Thus, if the secondary pressure is neglected,
the pressure along the portion of the tip and trailing edge affected by
the secondary pressure will not have been reduced to zero. The magnitude
of this error becomes evident after calculating the chordwise pressure
distributions along sections near the tip. The secondary correction for
the error can then be easily estimated using, as guides, the trends of
the primary corrections. As shown in figure 1, the regions in which the
secondary corrections apply are located between the wing boundaries and
the Mach lines reflected from the points where the Mach line from the tip
of the leading edge intersects the trailing edge, and where the Mach line
from the apex of the trailing edge intersects the tip. The excess second-—-
ary pressure adjacent to the leading edge is neglected in cases in which
the Mach lines from the trailing-—edge apex intersect the leading edge.
This approximate procedure is sufficiently accurate from a practical
standpoint, as will be shown in the following illustrative case. The
effect on the pressure distribution of secondary pressure existing upstream
from the leading edge is not treated here, but is believed, on the basis
of the results given in reference 8 for the lifting case, to be small
enough to be neglected.

Violations of downwash boundary conditions.— Although the equations
for the sectors of canceling pressure in general do satisfy the boundary
requirements for the pressure, they do not in every case comply with the
condition that the downwash flow on the wing be zero in order that the
wing be flat. As discussed in reference 7, the terms cosT1 X '" and

81t should be noted also that a detailed analysis of the small secondary
corrections would not be fully Jjustified in view of the possible signi-
ficant effects of viscosity, which are not considered in the present
analysis.
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.«/l—X'!z in the expression for a single oblique canceling sector for the-
wake (equation (9)) have a real part, which corresponds to pressure, and
an ilmaginary part, which corresponds to downwash. For these oblique
sectors, the real parts are zero only in the range -1 <t<a, and the
imaginary parts are zero only in the range my <t < 1. It is observed

that some of the rays (in the negative range of t) from the sectors
near the apex of the trailing edge of one wing panel (say the right panel
in fig. 1) will pass over the opposite wing panel, thus introducing some
downwash flow on that panel. The same effects occur on both panels, but
the regions of the wing and the amount of the downwash flow involved, in
general, are small. Hence, some imaccuracies in the cancellation proce—
dure are unavoidable, but they are believed to be insignificant in the
final result.

" Illustrative application.— To illustrate the application of the fore-
going analysis, the pressure distributions along chordwise sections A-A
and B-B and along spanwise sections C-C, D-D, and E-E of the wing in
figure 1 have been calculated and the results plotted in figure 7. 1In
this example, the y axis is assumed to be the axis of pitch. For com—
parison of their magnitudes, the conical and quasi—conical terms in the
trailing—edge and tip corrections are shown individually in parts (a) and
(b), where it is observed that, in general, the quasi—conical terms are
small compared to the conical terms. Both for this reason and because they
involve a considerable portion of the computing time, the quasi—conical
components probably can be dropped in most practical cases. The procedure
for calculating the pressure distribution then becomes essentially the
same as that outlined in references 7 and 8 for steady 1lift.

A close approximation to the pressure distribution in steady pitch,
therefore, may be calculated by the following steps:

1. Calculation of the basic pressure distribution for the entire
wing by means of equation (3) :

2. Correction of the basic pressure between the subsonic trailing
edge and the Mach line from the apex of the trailing edge
(regions I and III) by means of equations (4), (7), and (11)

3. Correction of the basic pressure between the subsonic tip and
the Mach line from the tip of the leading edge (regions IT
and III) by means of equation (A5)

L. Estimation of the secondary corrections between the wing boundaries
and the reflected Mach lines from the trailing edge and tip,
using as guides the trends of the primary corre¢tions in steps
2 and 3 - ’

5. Addition of the necessary lifting pressure in accordance with
equation (1)
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Where less accuracy is required, equation (7) and the quasi-conical terms
in equations (11) and (A5) may be omitted. If the region between the wing
boundaries and the reflected Mach lines is small, then step 4 may also be
excluded.

Derivative for Damping in Pitch-

The derivative for the damping in steady pitch is calculated in the
same manner as the pressure distribution; that is, the basic uncorrected
value will first be determined based upon the expressions for the pressure
distribution of triangular wings, and then primary and secondary correc—
tive terms resulting from the cancellation of the excess pressure in the
wake and outboard of the tips will be added. As before, the conical and
quasi—conical components are developed separately in order to ascertain
their relative magnitudes.

If the distribution of pressure is known, as well as the correspond—
ing moment arm to the center of pressure of any sector of the wing, the
damping moment in pitch for the basic plan form and for the separate
regions affected by the cancellation of the exterior pressure can be
readily calculated about some particular lateral axis. - The spanwise axis
passing through the center of gravity (assumed to lie on the x axis) has
been chosen in this analysis. However, since the pressure distribution is
based on a pitching velocity about the y axis, the choice of any axis
other than the y axis requires a computation of the additional angle—
of-attack corrections given in equation (2). Hence, the damping deriva—
tive calculated in the following sections is not, in itself, complete,
except when the center of gravity lies at the leading-edge apex.

Basic value for the damping derivative.— With reference to figure 8,
it is seen that an increment of damping moment due to the basic pressure,
which is quasi conically distributed with respect to the y axis on an
element of area (dS/da)da, 1s equal to the product of the resultant
force dZ and the moment arm X, the value of .x being (EXA"xc.g.)'

Thus, from equation (3) and taking into account both halves of the wing

- 2 x4Z

(34 1 a&.&ﬂg:fiég)} "
2<h '\ xc.g.>[<5‘°vz>3 2V/ PR c. JmPa? <~da aa (1)

o

daM

In this equation, the resultant force is based on an average pressure
equal to two-thirds of the pressure at the point xp,yp at the end of the

sector. The total moment is found by integrating this expression over the
two ranges, O <a <ay, for which (from reference )
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d__S _ mt2002

da EB(mt—a)z
and a4 < a<m, for which
 Bs
L
as _ ps?
da 2a%

Equation (14) has been integrated numerically in Appendix B where it is
expressed in the form of the damping~in-pitch derivative, that is,

x w |

Cm = m = 0 M | (15)
a2 §/%% (%o 12 j
g — oV ) Scg |
v v 2 3
‘ . o
Since the pressure coefficient and the parameter <:E_g are directly
' 2v

related in the lineariéed potential theory, the derivative may be written

as
Cmq‘= 1 _ M
%) (¥7)
—_— V | Sc
: ( v 5" o

The tapered (m # m.) and the untapered (m = my) swept-back plan forms
are treated separately. The result in each case represents the basic
uncorrected value of the damping derivative, to which must be added the

following primary and secondary corrections due to the cancellation of
the basic and secondary pressure in the wake and outboard of the tips.

Primary corrections due to cancellation of basic pressure in wake.—

If the trailing edges are subsonic, it is necessary to correct the basic
value of the damping derivative for the effect of canceling the excess
basic pressure in the wake by use of the oblique and symmetrical sectors
of pressure. Considering first the portion of the basic pressure canceled
by the symmetrical sectors, the increment of force on an element of wing
area (dS/dto)dto due to the cancellation of the conical component is

”’

. P -
- 1l w2 Po .. ds
dz,!' = =pV —= ¥ k dt
1 ( > - (po,ko) <\dto) o

- 2 P o
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That due to the quasi—conical component 1s

o 2 Xg=Cq 2
aZs' = 3 <%DV > Pp scoo = {F(q)o:ko) -

n®(1-t5%)  Ko=(n/2)
to2(1-m2) K E,

gin™?

(F( @k, B,k o) ] }@%} at,

in which the average pressure is two-thirds of the maximum value at the tip
(or leading—edge) end of the element of area. As illustrated in figure 9,
the moment arms of the two respective forces are

»
[
]

Co * % (xg—co) — Xc.g.

= Co ¥+ 13:? (’Fs“co) - Xc.g.

a
V]
I

" giving the increments of induced moment

aM; ' = x;! 42,

dMp! = X' dZo'

The total induced moment on the wing 1s found by integrating these two
equations between the limits my and 1. If the rays t, intersect the
leading edge as well as the tip, the integration must be perforned sepa—
rately over the two ranges my < to< my and my< t, £ 1, where m,
as shown in figure 1(b), designates The ray passing through the tip of
the leading edge (i.e., mo=Pms/(Bs—mc,)). For t,< mg

XB = ‘B—-B" + Co
to

as ;Bsa
ot 2

at, o

while for to > Mg

c

Xg = o + Cq
ton

is mzcoa

dt, 2B(tgm)®
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Based upon these wvalues, the damping correction, expressed in derivative
form, to be added to the basic derivative therefore becomes

| g, Mg,
where
z r oy ,
Acm t = <..b_? EI]_’I I 1 + _2_ ﬁs xC.g.) 1 F(cpo)ko) at
d1 S/ R | -y 3 toco o 2 K,

4 2 1 '

/me 2 m xc,g,> 1 F(90,ko0) }
142 _ 3

K ) v ( T3t (tom)® Ko o | (26)

NCmg " =<f 8m£(’/%/ 3 Bs Xc-s-) 12

.S_ 3RC°{,Jmt K1+Eto°o_ o 3 ;{{F(%:ko)—
tg 1 /mB(1-2) - K ~(n/2) |
- — i -— —
m| O Wt 20m5) | K=, [F(%’ko) E(%’k")] } To ¥

8 »
me,, 1 3 m Xc.g. 1 2 {
—0 1 - =3 -
< Bs > Lm/\o \ + E 'bo'—m. CO > (to"m~)s 7t F(ch’ko)

o _ m2(1-t,7)  K~(n/2)

—=1! 8in > >
my, 62 (1me?) Ko E,

F(0) = 00,55 | | at

(17)

If m, is greater than 1, the second integrals in equations (16) and
(17) are not required. The equations should be integrated by a graphical
method, .

The damping correction due to the cancellation of the basic pressure
in the wake in excess of that canceled by equations (16) end (17) is
calculated in a similar manner. The induced moment on the wing due to a

n
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single oblique canceling sector originating at a point A(gA,yA) on the

trailing edge is first determined, and then the total moment is found by
‘integrating the effects of all the oblique sectors superposed along the
trailing edge. The two resultant forces, one (dz,"") arising from the
conical portion of the canceling pressure and the other (az,'") from
the quasi—conical portion, acting on an element of wing area (as/at)at
are shown in figure 10 for a single oblique sector. Considering first
the case in which none of the rays from the oblique sectors intersect

the leading edge, the average quasi-conical pressure is two—thirds the
maximum value at the tip end of the element (for which x — x, is equal
to B(s—yA)/t), and the two increments of force from equation (9) become

ap _
—Pa da cos 1 X1t ds it
da at

~ 4 ~
aZott =<lpv2> 21 dPPA> da B(s—yp) me cos - X' —
2 3 n\ da tx, mga

3
S
A

ta 1-my ./1_)(n2> (ﬁ) at
it

t-my l-a

The two respective moment arms are seen from figure 10 to be

xl'l = Xp %a(SEYA) _ xC.g
Ta'' = xp + %B(s;yA) Xc.g

The term dS/dt is given in reference T as

s _ pm?s? a—a 2
dt 2ay2t2 PR

The two increments of induced moment due to a single oblique sector
therefore become

dMll! illi d_lel

I

dMot ! 5!—2" dZ2"

The total induced moment due to a single sector is now found by inte—
grating these expressions with respect to t over the range my <t31
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on the wing. A second integration with respect to a over the range
—ap < a < ag then gives the total moment due to all the sectors super—
posed along the tralllng edges. Therefore the correction, expressed in
derivative form, for the region adjacent to a subsonic trailing edge °
(regions I and III in fig. 1) becomes

AC §'=AC 1t L AD e
mq . mQ:L sz

a't 1 PP k
= { f X, <d A>l‘cos——1 Xt <dS> dtda +
. da /% dt
my, .

<% " . da Xy m-a
= VA J / s dtda} \, (18)
t-ng 1-a ‘ :

The results of the integration of equation (18) with respect to t are
given in Appendix C (case I); however, a graphical method of integration
with respect to a 1is required for the complete solution.

Conflguratlons, in which the Mach lines from the canceling sectors
in the lower range of a intersect the leading edge, require additional
calculations for the range my < t< 1, in which t =m;, (m; < 1) is
defined as the ray passing through the points A(x,,y,) and the tip of
the leading edge (fig. 1(b)), that is,

_BS“yA
m, = Bs
o "%

Thus, the.integration with respect to t must be made over the two
ranges g < t<mg and my < t< 1. If only the conical pressure
terms are considered the area and center of pressure of an incremental
sector in the range my; < t <1 are :

as _ xez(m - a)2
dt  2B(t — m)2

R G ) R
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This range disappears for those sectors which have Mach lines passing
downstream from the tip of the leading edge, the limiting sector being
defined by the ray a, (fig. 1(b)), where

W o Lo (Bs/com) (1-m)
L1 - (Bs/mgme,) (1-m)

Hence for a 2 a;, equation (18) applies. The damping correction for
the region 0< a<a; is calculated also in Appendix C (case 11),

but only for the conical pressures since the quasi—conical pressures have
been shown to be negligibly small.

The complete correction to the damplng derivative resulting from
the cancellation of all the basic pressure in the wake is comprised of
equations (16), (17), and (C2) (or (C6) or (CT), as required), in which
the conical and quasi-—conical terms are retained as separate components.

Primary corrections due to cancellation of basic pressure outhoard

of tips.— The primary correction for a subsonic tip with zero rake can

be calculated in a manner similar to that for a subsonic trailing edge.
The forces dZ,''* and dZo''! on an element of wing area at the tip
due to the conical and quasi-—conical components of the canceling pressure,
together with the respective moment arms, are shown in figure 11. The
force dZo''!t corresponds to an average pressure equal to two—thirds of
the maximum pressure at the point of intersectlon of the ray t and the
trailing edge, for which

(i)
Xy t-mp\a @&

From equation (12),

dP:
1v2) 1 Pp -1 as
az,*tt = =p = |- da cos tref =) g

dP -~ .
azottr =( 1 > .1_(_1?A e 29 (1 1 L&) cosxrrr —
22 <§pv2 T\ d /3 tm\a ag/a
t-a 2 | /a5
| J1xr as \ gt
t(1+a) J(dt>
in which
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The respective moment arms are -

o It 11
+ = — —_—— = - X
3t - mg <’a at J c.g.

3 Iy 12 :
e (E)] -xe

Therefore, the primary corréction’to the basic damping derivative for -
regions II and III at the tip becomes

X 41t = Bs

[ I——
S

9

: Xo'1t = Bs [

LI B 1t tee
e Ay, + A0

Tg Q1 a2
o 4P _ .
- 2 { X < _P._A__) 1 cos 1 xree <g'—s-> dtda +

qco da Tt dt/

v )% B 7 - |
- m . O . :

ottt Eﬁ)lgjﬁ.i_i E c%ﬂx”'—
da 3 tm\& & /a

- at —1 . N .

ELﬁﬁﬁKgﬂﬂ» - (1)

t(1+a)

An analytical integration of equation (19) with respect to t 1in. the
range -1 St £ 0 is given in Appendix D. A suitable graphical method
for integrating the resultant expression with respect to a (as outlined
in reference 7) 1is also included. The tapered and untapered cases are
¢onsidered separately. : ‘

Secondary corrections.— As discussed previously with regard to the
pressure distribution, the calculation of the damping derivative, to
be complete, should include corrections for the secondary and smaller
pressures. This is most simply accomplished by estimating the magnitude
of the excess loading at the tip between the secondary (reflected) Mach
lines and the edges of the wing (see diagrams of the pressure distribu—
tion) and the distance from the pitching axis to the center of loading.
For practical purposes, the excess pressure on the wing may be assumed
to vary linearly from the maximum value along the wing boundary to zero
along the Mach line. The excess pressure along the tip is equal in magni-
- tude to the correction due to the cancellation of basic pressure in the

wake; and that along the trailing edge, to the correction due to the




28 NACA TN 2197

cancellation of basic pressure outboard of the tips. The excess pressure

upstream from the leading edges may, in general, be neglected. This
approximate method has been used in the following illustrative example.

Tllustrative example.— The derivative for the damping in pitch of
the configuration shown in figure 1 has been calculated using equations
(B4), (c2), (D3), (16), and (17) and the procedure given in the pre-
ceding paragraph for calculating the secondary correction. For this

- example the center of gravity is assumed to be located at the apex of the
leading edge. The results are presented in table I, in which the conical
and quasi—conical components are shown individually.

It is apparent that the contribution to the total correction of the
quasi—conical terms is only a small portion of the final value of the
damping derivative and therefore may be dropped in many practical cases.
The estimated secondary correction in some cases may also be insignifi-
cant, particularly those in which the wing is considerably tapered. If
such approximations are warranted, then possibly the simpler method of
reference 6 for canceling the excess pressure in the wake may be used.

The calculation of the damping derivative therefore can be accom—
plished in the following steps: : :

1. Computation of the basic value for the over-all plan form by
means of equation (B3) (or (BA4))

2. Correction of the basic value for the effect of a subsonic
trailing edge by means of equations (16), (17), and (C2)
(or (C6) or (CT), as required), dropping the quasi—conical
terms where feasible

3. Correction of the basic value for the effect of a subsonic tip
by means of equation (D3), dropping the quasi-conical terms
where feasible

4, Estimation of the secondary correction for the excess secondary
pressures as outlined, if required

5. Addition of the angle—of-attack corrections in accordance with
equation (2)

This procedure follows closely those procedures given in reference 7 for
the 1ifting case and in reference 9 for the rolling case.

CONCLUDING REMARKS

Through use of the method of the superposition of conical flows, the
calculation of the pressure distribution and the derivative for the damping
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in steady pitch has been extended to include swept-back wings having all
edges subsonic (provided they are also straight). The method presented
is rigorous if carried out in detail, but for most practical purposes it
can be shortened considerably by neglecting certain less significant
terms in the final results. The method resulting from such simplifica—
tion parallels closely those methods presented for swept-back wings in
reference 7 for the case of 1lift and in reference 9 for the case of roll.

Although this analysis does not include wings having positive or
negative rake at the tips, it can be easily adapted to wings having nega-—
tive rake. The analysis is not complete for configurations in which the
Mach lines originating at the trailing edge intersect the leading edge;

.however, the results given for such cases are belleved to be sufficiently

accurate for most applications.

The analysis has shown that abrupt changes in pressure should occur
along the various primary and reflected Mach lines on the wing, especially

‘those originating at the tips of the leading edge. BSuch effects have

been found previously for wings at constant angle of attack and in steady
roll. It should be noted, however, that such discontinuities in pressure
are not compatible with the flow that would be found on wing surfaces in
a viscous fluid. There is evidence that, because of the ypresence of a
boundary layer on the wing surfaces, the pressure changes are much more
gradual than those given by the foregoing theory. In particular, it is-
believed that a rigorous numerical analysis of the secondary corrections
for the pressure and damping derivative (for region IIT in fig. 1(a)),

because of the moderating effect of the viscosity, would not be Justified'

from a practical standpoint. For this reason, approximate methods for
calculating the secondary corrections were utilized in the present report.

Ames Aeronautical Laborator&,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., May 12, 1950.
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APPENDIX A

INTEGRATION OF PRESSURE CORRECTION DUE TO CANCELLATION OF
BASIC PRESSURE OUTBOARD OF TIP

The equation for the correction for the basic pressure in the vici-
nity of a streamwise tip due to the cancellation of basic pressure out—
board of the tip (equation (13)), namely,

m
ter = 2% 8 / ao( 5-y) <x.,:;> ome_g?2
AP = o] 2 B XA 4
P <2V ( y+x) s {‘8[0 c (By—ax)'\/ (mz_az) (a_ao) (]_+a) a+

f < >[ °(l+a)J (By—ax)ﬂ/(msi;i—ao)(lm) da} (A1)

can be integrated in terms of élliptic integrals in the following manner:
. Xp _ Bs
Substituting o sy glves

o € -
- [a,(s—7) 2 |
APt =.__<§.C_°>§_ £ (By+x) _a_O____ {:Z‘m m da + -
P v /R ¢4 s o a(By—ax)«/(ma—az)(a—ao)(lm)
m
f (mta)(m-a) da +

a(By-ax) (m?-a2)(a-a,)(1+a)

8o

/Jn a-aq m2 da +
J ag(l+a) a(By_ax)ﬁmz’—&z)(l*'&)(a‘ao)

(o}

m

a-a, (m+a) (m-a) 4 A2
“a/o a6(1+2) a(py-ax) W(mP—a?)(asg)(1ra) - e '
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Equation (A2) may be expressed in terms of elliptic integrals by substi—

. tuting .

." . ) l \

I [(ag+l) (m-a)

(a+1)(m-a) _
| | ) (a3)

. /(m-a. ) (1-m)

en(l+aq) . J
Thus, |

APVt = _(2?_9 16 s By+x a (S—y {Ebk l+m)—f f fu s
F 2V /MR Co BY-MX /[ on(1ta ) gm(lJra )»/

o]

(h-£)22b(1+m) (h+k?) du
h(h+b) 1+hsn2u
> K

(b+f)3+2b(1+m) (b—k3) du +

- b(h+b) 1-bsn®u
K

‘- ‘_ m—ao [ 2bk2 ( l+m)-—f2 f (l—snzu)du +

a,(1+m) bh

du +

(h—f)>-21( 1+m) (h+k?) l-—sn u
h(h+b) 1l+hsn?u

(b+£)2+2b(1+m) (b—kZ) Kl—snzu a ]} (Ak)

b(h+b) 1-bsn=u
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The solution to equation (A4) reduces to the final form

N

1 (en®x®—p%y%) . em(By+x) [s=y o ]
o

BY o (uxspy) (mx-py) PV s

/ q°0> 168

2
\\ o7 ® o { (1-2m' )[
1+a, /e (s=7)  g(x)
) s

o (s—
l—2m2 o( )

16 s li
~ 2m(l+ap) s

K(k) —

(s—=y) ~2m( Tia o)
a(1-m 2)

aoBy(By+x V2m(1+a,)

[E(x) - k*Z

_ 2m(By+x)
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K(k)] +

[on® (x+By)*~(2m 2" %y") ] -

(2n®x®—B2y?) (By-2a %) 1 v
aBy(x+By) N (ux+By) (mxBy) By
= APPlut + APPg'”

where _
= [E(k) — K(k)] F(P,k') + K(k) E(p,k')

o = [E(k) — K(k)] F(¥,k') + K(k) E(V¥,k*)

¢ = sin =+ l+m
Y l—k
¥ = sind 1 By+mx % 1+m
-/1—k2 By+x 2m
_ (m—a,)(1-m)
2m(1+e,)
k' = o 17

S~y d }
s 6]

> (A5)
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The first bracketed term in equation (A5) répresents the part of the
correction due to the conical component of the sectors of canceling
pressure; the second bracketed term, that due to the quasi—conical com—
ponent. ’

Of particular interest are the corrections for points on the Mach
line originating at the tip of the leading edge. Along this line the
terms a, and k in equation (A5) reduce, respectively, to m and zero;
and, as a result, the second integral in equation (Al), corresponding to
the quasi-—conical’ component of pressure, vanishes (since a-ag-> 0).

‘On the other hand, the conical component is finite along the Mach line
and equation (A5) reduces to '

App 't - _ [2‘3_o> 8s /[l |:l—2m2 /m(s—y) , 2m(By+x) /[ m(s—y) _
/ 1 \ 2V / R ¢ 2m L l+m 8 By 5

onx>- 82> } ‘ (A6)
By o (x+By)(mx—By) |

Thus equation (A6) expresses an abrupt drop in pressure along the Mach
line.
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AFPENDIX B
BASIC VALUE OF DERIVATIVE FCR DAMPING IN PITCH

From equations (14) and (15) the basic value of the derivative for
the damping in pitch may be written

(1)

@ L

After substitution of the respective expressions for X and dZ, equa—
tion (B1l) reduces to

=_/b2>\ Bz{[f om”—a” da+<nﬁs>/ (mt—a)‘*,/ da:]_
EIIRE: )f =L

<th > f (mt—a) J_ }} (2)

The final expressions for the two cases mfmt (in which my > m) and
m=my, after integration of equation (B2), are as follows:

mimy
SRIEE =2
Co

3m at>

(s { sl [ e
3(mt2~mz)(mt—at) (mg-e4)2 2(m2n2) (my—ay)

ot +120Pmy 2 +myt ] . m3(4m¢—12mt2m?+23mt§) N
2(ngPa?)? A 6u° (mZ )
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2 2 2 2
men (2m +3_mh_ ) I:cos"l T —cost L :] } -
. 2(mt2—m2)3 v/m‘tz__ma m(mt—‘a’h) my

ECORC

mtc°>4 [ (2m4*5mt2m2+mt8at+2m2mtat) V2-a 42

Bs 2(my®-07)? (my—ay)?
n®(2m®-5m, 2) R 3my.2m? (éos-l me-mi 8.,
omy?(my2-n?)?  2(mpP-m?)2o m 2 n(mt-at)
cos™? 5‘; ” | | (B3)

m=
e () () § | (2

< > 105m (m—a ) [(6h °kém” at_l*mt +ay %) o/u® at” ~ 6l (m-at) i]}

(G ==.

mc 0

< ) 5m(m—a1.;)a [(umz—eat#_étz)Jm _%* .(m'fat)aJ }:] (B4)

If the term x, c.g. is zero in the above equatlons s then the angle—of—
attack correction given by equation (2) is not required.
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APPENDIX C

CORRECTIONS FOR DAMPING DUE TO OBLIQUE
CANCELING SECTORS IN WAKE

The corrections for the damping derivative due to cancellation of
the basic pressure in the wake by means of the oblique sectors are given
separately for the two cases m, > 1 (i.e., Mach lines from trailing

edge intersect tip) and my <1 (i.e., Mach lines from trailing edge
intersect leading edge).

Case I (m; > 1)

The correction for this case is given by equation (18), which, upon
substituting the expressions for x'' and dS/dt, becomes

mmqll = Mmqlil + Mmq2l|

2 Bm¢ s>
/ qc SC Qnatz mt—a'
2v.

) [ [

2t 2
2 :
2 B(S—YA) L cos™® Xtrdt da + 2 B m‘t 52 (a4-2) S—YA <dPPA>X
37t | t7 3 emag® J (mg-a)® % da

1 '—-———— -
f IVKA-xo.g.+ v B(S_YA):, e <C°S_1X" - Tt >dt da}
\mt ’ ) -

t t3 t—mt l1-a

(C1)

Integrating equation (C1) with respect to t gives

<b2> taPp, (aya)® /Xp—Xc my—8
<qco u\at)f dn a(ma)? {_\ coog'> <mt > R

2v

B <S—YA> (mt2—<32> +[ <XA“‘xc.g.> +
3 o am;2 co
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. | <-yA>< l+mt>:l/£@—j:_:_z;)—a—j}da¥

< >52 mt dPPA a8 _Aig_
<> 2 ()( >{( N

2my—a(1+my ) (mt—a) (1-a) J (—.‘YA) [ (m,t—a)(Qm,t+a)
ka®n (1-a) W a%m®

haem_f(l—a) m;

-+

where

dPPA = /qco> Bmy [ 2m4—3m a2+a3mt ] (c3)
aa oy ER (mg—a) (2 2)3/2

x = %%
A mp-a

e Al

"2 7 B(ng-a)

Equation (C2) should be integrated graphically. Since the integrand of
this equation is indeterminate for a = 0, the following expression should
be used for the point a = O:

), (5 mé;:t% ) bg”* (%2 +8 <5+3mt> g
<b?> 2‘*;2:1:%4 {<c°_:Z-x->umt(1_an)2+ %i [6(1+n%)(lmt)2~ |

3(l—mt)(5+3mt) + 12my (1+my) — 5(l+md,;)=3 + 16 :I } - (ch)
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Case IT (m, < 1)

The correction for this case is composed of two parts, one for the
range a; ‘S a <a; and the other for the range 0 <a <a;. Thus,

(o o)
9 /a> a, 1 Jacg ay

The first part for a >a; is given by equation (C2). The second part
has to be evaluated separately over the two ranges m, <t < m, and
m <t <1, that is, -

(). Tt L )

&< a.z o

If only the conical component of the canceling 'pressure is comsidered,
the correction for the range 0< a< a; becomes

(1) .<.:_>.._{ [ e

a< a.Z
2 B(S—YA)] ( > cos x" ( > dtda +
3 Ea.t my-e,

a
1Nl x
/ x (1 - Zc.8. , 28
N A xA 3 t-m
(o]
)

P 2 2
da T 2B t

When integrated with respect to t, this expression for a tapered wing
(m;ém.t) reduces to
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APPENDIX D

DAMPING CCORRECTION DUE TO CANCELIATION
OF BASIC PRESSURE OUTBOARD OF TIPS

The correction for the damping derivative from equation (19), after

‘substituting the expressions for E;''', E''', and ds

and integrating
with respect to t, becomes '

Acm 1Y = Acm 1Yy 4 AC 11t

q N my,, o :
ey
= ég)B = [ (@G Y (rema) e
2v |
o EELAES G

&

1 .1 Ja(lw) [hemt L 1 ]} .
(mt—a)2 mi-a m,b(1+m,t) Em’t(l"'mt) mi—a | :

<l> B2 ey ;_—xc.g. 1,
<m> HECIEENIES PIE

mt—2a [ a(l+a) _ 4 :l _ 1+2my a(lva)
2(my-a)® L o m (14my) #(L+mg) (me—a) & mp(L4my)

e A G =

L «A/—a_—— (1+a) [_ - 1+2my . m¢+a+l N 3a-m¢ :l-+
) my (1+my ) 8mt(mt—a)(1+m.l.)2 6(my—a)2(1+my) v6(m,c—a.):3
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1+2my /a(l+a)} da (01)
bm® (14my )% (140) W m (14m)

?_m_‘[:_ n dPPA |
[[()s0s] o
8¢

where

e = (2o 2 ) {(1-% ){_+g<a>]-—<--at)[%;+p<a>}}

7te) =';_<g - at> {< [_ rne) - (1+mt)(1+a)«/m) J+
.3mt< atN ot @)+ Q%Z(i:;m‘;z(l+a)«/‘mi8::) ”

and

gla) = mtl_a :/migiii) -1 J

p(a)-——"g<a>+ Lien,  [a(ia) }

my—a 2my (T+mg ) & my (T+my )

1T _ L+omy a(l+a)
h(a) ma (m,—2a) g(a) 2(T+me) o/ mg (1rme) ]

_ 1 i _ l+omy [ a(1l+a)
J(a) T Ll(a) bmy (14my )2 my, (1+my, ) ]
1 my+a+l a(l+a)
T(oa) [(3a—mt) g(a) + Lomy /mt(l‘fmt) }

1(a) =
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Since the term dl;PA becomes infinite as a approaches m, it is
a .

. ~ .necessary to transform equation (D2), according to the procedure outlined

' in reference 7, to the following more suitable form for numerical integra-—
R tion, where the two cases m # my (mg > m) and m =my require separate
‘ ' solutions as noted:

| . ‘o EBzmtz o r ' » m+Jm2__a - .
| ACmq = (%—) ————-—R 2—;2— il{H (m) ‘;2m log<____at t >_.
R J *fm H'(a) -H'(m) <2m -a2> da}
b v nfa®

fm J'(ai/;z%m) ?m:‘a2> da } | (D3)

ag

Case I, m;ém_b

-H"<a)=(g—at> {- %[—+g(a§] Lot gria) - (- 4) ta) +
a2 wo]}-30-2) 2+ wo) 2o

3
' _ 1 Xc o, ' _ 1 (1+a) _
J_ (a) = %(z%,_ - E{) {(%— —g—s_g_ [h (a) hamt(l+mt)(l+a)2 mi(l";t):] }
3 :
2 /11 : 2+5my, a(l+a) _
282 (; ay/ [h(a) + 3 mpdle) + 2my (1+m, )2(1+a) V/;t(l—mt) ]

(-2 {@-53) [2000-

i 3 (6 (e
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1+2m; . A/;m— } ‘
Yamt®(1+mg )2 (142)2 ¥ my(1+my)

in which g(a), p(a), h(a), j(a), and i1(a) have been previously defined,
and

gt(a) = L [ gla) + 2a+l J
e ' 2“/am_t(l+a)(1+m_t)

p'(a) = L I:P(a) + g'(a) + (1+42mg) (142a) ]
me—a hmy (1+my ) A/amt(1+mt)(1+a)

ht(a) =1 ((mt—Qa) g'(a) — 2g(a) + h(a) — (1+2mt ) (1+2a) ]
mga L | b(1+my ) W/amg (14) (L4my)

‘ . (1+2m¢ ) (1+2a)

1(a) = -2~ | 3(a) + 17(a) —

Jit(a ng-a [J + a 8mt(l+mt)2 Jamg(1+a) (Lemg) ]

1'(a) = 1 [31(3) + 3g(a) + (3a-my)g'(a) + 1 a(l+a)
3(my—2) 1+my o mi(l+my)

(1+2a) (Myra+1) ]
2(1+my) A/amt(l+mt) (1+a)

Case 1T, m = my

Ve

JORE —aitf{—;}g-[% v em| +(2 - %é)y@— (2 —i>p'(m)+

2] B (8- [ om ] (-5
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| s 3 ,/ x
gt(m) = 1 _ZL__l_){l__.c_-éL- [
o 2 \m .

where

m Bs

b (n) “m”—

1 /1 1V | : 245m
[h(m) + 3mj(m) + r(lm)s J

(G35 )

1 4 N .
3m/ 1 1 o (m) 4 _ Ltom ]
8\ m at I:J (m)‘ 4m3(14m)*

2m+1

= - _emtl ‘(m) = —xXLt
g(m) 2m(1+m) g* (m) 8n° (1+m) 2
p(m) = _ 3+0mtén” p(m) = _Lt2m
8m® (1+m)> E 8m°(1+m)®
h(m) = -2 43 : hv(m)=_i__
m  8m(1l+m)2 8m2(1+m)®
2,3
(m) = h+15ﬁ1+2’+m. +8m 3'(m) = — 3-;8m .
2hm3(14m)° 64m®(1+m)
om+1 _ 1+3m+12m%+8m®

Um) = 1'(m) =

Ym(1+m)2 ol (14m) >
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TABLE I.— CAICULATED DAMPING DERIVATIVE FOR WING SHOWN IN FIGURE 1

g

. . , Perceht
Quantity Magnitude of total
Cp (uncorrected) —12.17k4 179.3
q
&C, ' (T.E., conical) 1.063 —15.7
d1 :
AC v (T,E., quasi conical) .06 -7
g
AC, v (symmetrical, conical) 1.883 —27.6
di
AC, ' (symmetrical, quasi conical) .129 —-1.9
dz
AC, *'' (tip, conical) 2.431 -35.8
k1
AC_ %'t (tip, quasi conical) .231 —3.4
Mo
Estimated secondary corrections —-.400 5.9
C,, (corrected) -6.791 100.0

bt
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M= 1 .50

A
[7,
Y

(a) lMustrative wing plan form,

Figure [.— Wing plan form, coordinate system, and prin-
cipal symbols used in analysls.
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(b) Pressure field canceled by oblique sectors.

Figure 2.~ Field of pressure in the wake to be canceled.
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R,
dx (X"Co)

.

== !

P(x,y)

Figure 3.— Symmeftrical pressure canceling sector in the wake.
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SAVAANNRRNNY

—Secondary pressure
X | ‘

Figure 6.- Regions of secondary pressure in the
wake and outboard of the tips and the leading

edges.
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/14
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/01 4 .
Basic pressure —\/ T

Mach line (TE.)
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st o ‘ ////

conical correction ‘—\T}' T
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Conical correction (TE.) T N
TP -

-4+ Symmetrical-conical / \\

correction (TE)

A
4

-6
-8 | : : : ; = i : |
o 20 40 60 80 /100

Percent chord
(a) Section A-A.

Figure 7.— Pressure distributions along various sections of the illustra-
- tive plan form in steady pifch.
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/14y
/12 —
Basic pressure—\/t -
101 | T
ol
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P 4 —Mach line (tip) |

- Secondary  /
Mach line— /
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_ 2--0uasi-con/ca/ correction (TE.)=>—<<
Quasi-conical correction (w

-qlConical correction (TE.)

| Symmetrical conical correction——

-6{Conical correction (tip) |
Estimated secondary corrections (TE. and tip)

[ | ! ] }
o | 4 L 1 LIS T

0 20 40 60 80 100
, Percenf chord ‘

(b) Section B-B.,

Figure 7,— Continued.
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